Exercises for Stochastic Processes

Tutorial exercises:

T1. Let B be a Brownian motion and $s, c>0$. Show that

$$
X_{t}:=B_{s+t}-B_{s}
$$

and

$$
Y_{t}:=\frac{B_{c t}}{\sqrt{c}}
$$

(each defined for $t \geq 0$) also define Brownian motions.

T2. Let B be a Brownian motion. Show that $\frac{B_{t}}{t} \xrightarrow{t \rightarrow \infty} 0$ a.s.

T3. Explain why

$$
X_{t}:=\int_{0}^{t} B_{s} \mathrm{~d} s, \quad(t \geq 0)
$$

defines a Gaussian process. Compute its mean and covariance function.

Homework exercises:

H1. Let B be a Brownian motion and $0<s<t$. Compute $\mathbb{P}\left(B_{s}>0, B_{t}>0\right)$.

H2. (a) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be i.i.d. with mean zero and finite positive variance and let $S_{n}:=$ $\sum_{k=1}^{n} X_{k}$. Show that a.s.

$$
\liminf _{n \rightarrow \infty} \frac{1}{\sqrt{n}} S_{n}=-\infty
$$

and

$$
\limsup _{n \rightarrow \infty} \frac{1}{\sqrt{n}} S_{n}=\infty
$$

(Hint: First prove that $\mathbb{P}\left(\left|\lim \inf \frac{1}{\sqrt{n}} S_{n}\right|,\left|\lim \sup \frac{1}{\sqrt{n}} S_{n}\right|<C\right)<1$ for all $C>0$, by assuming the contrary and finding a contradiction with the central limit theorem. Then apply Kolmogorov's 0-1 law.)
(b) Let B be a Brownian motion.

Show that

$$
\limsup _{t \uparrow \infty} \frac{B_{t}}{\sqrt{t}}=\limsup _{t \downarrow 0} \frac{B_{t}}{\sqrt{t}}=\infty
$$

and

$$
\liminf _{t \uparrow \infty} \frac{B_{t}}{\sqrt{t}}=\liminf _{t \downarrow 0} \frac{B_{t}}{\sqrt{t}}=-\infty \quad \text { a.s. }
$$

H3. (a) Let B be a Brownian motion. Show that the process defined by

$$
X_{t}:=B_{t}-t B_{1}
$$

for $t \in[0,1]$ is Gaussian and compute its covariance function.
(b) Show that, for $0<t_{1}<\cdots<t_{n}<1$ and real intervals $\left[a_{1}, b_{1}\right], \ldots,\left[a_{n}, b_{n}\right]$, the joint probabilities

$$
\mathbb{P}\left(B_{t_{1}} \in\left[a_{1}, b_{1}\right], \ldots, B_{t_{n}} \in\left[a_{n}, b_{n}\right]| | B_{1} \mid \leq \epsilon\right)
$$

converge to

$$
\mathbb{P}\left(X_{t_{1}} \in\left[a_{1}, b_{1}\right], \ldots, X_{t_{n}} \in\left[a_{n}, b_{n}\right]\right)
$$

as $\epsilon \rightarrow 0$.
(Hint: First show that B_{1} is independent of the vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$.)

